Transportation Research Board 104th Annual Meeting

January 5–9, 2025 • Washington, D.C.

TRBAM-25-03943 **Comprehensive Methodology for Assessment of Road Transport Emissions in Seaports: Port of Barcelona Case Study**

MOTIVATION

The transport sector is responsible for 25% of Europe's total GHG emissions, with road transport contributing 71% of this share. National and international regulations, such as Fit for 55, aim to mitigate these emissions.

Ports play a crucial role in transport sector and significantly impact the transition towards environmental sustainability, given that they are key nodes in the supply chains.

However, quantifying emissions in ports is complex due to the variety of activities and vehicles involved. Existing methodologies for calculating port-related GHG emissions often lack detailed estimation of vehicle travel distances within port boundaries.

CHALLENGE AND APPROACH

CHALLENGE:

The main challenge in the literature is the lack of specific methodologies for collecting data on distance traveled or fuel consumption in port contexts.

PROPOSED SOLUTION:

This research proposes a bottom-up approach for estimating GHG emissions from road transport within port boundaries, using ALPR cameras located at the port gates to generate an origin**destination matrix** of each type vehicles visiting the port.

 \rightarrow This methodology estimates road vehicle travel distances within ports to calculate GHG emissions. This approach provides a comprehensive view of road transport operations in the port area, categorized by freight type (e.g., containers, bulk, automotive) and vehicle fleet characteristics.

ALPR DATA

To calculate emissions, the following key metrics are required:

- The composition of the vehicle fleet visiting the port (e.g., car, bus, truck).
- The distance traveled by each type of vehicle.
- The emission factors associated with each vehicle type.

This approach uses data collected from cameras positioned at the access and exit points of the commercial area of the port. This methodology requires a closed network with ALPR (Automatic License Plate Recognition) technology installed at the external gates and at port terminals. This technology is crucial for defining the origin-destination matrix, which is necessary for calculating the total distance traveled within the port and for the definition of the types of vehicles visiting the port.

LICENSE PLATE	DATE AND TIME	LANE	ACCESS NUMBER
1234AAA	01/01/2022 00:01	ENTRY	Puerta 29

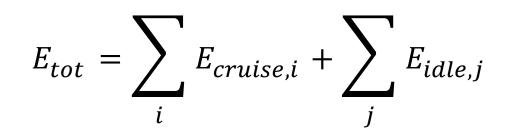
The ALPR information should be integrated with a dataset that associates every license plate to a type of vehicle, associating the type of fuel, environmental standard and mass.

It is important to specify the scope of the calculation in terms of both space and time.

Joaquim Cortes, Port of Barcelona, Spain

METHODOLOGY FRAMEWORK

ALPR INFORMATION:


- Time information (date and hour)
- License plate number
- Direction of travel (entry or exit)
- Camera's location

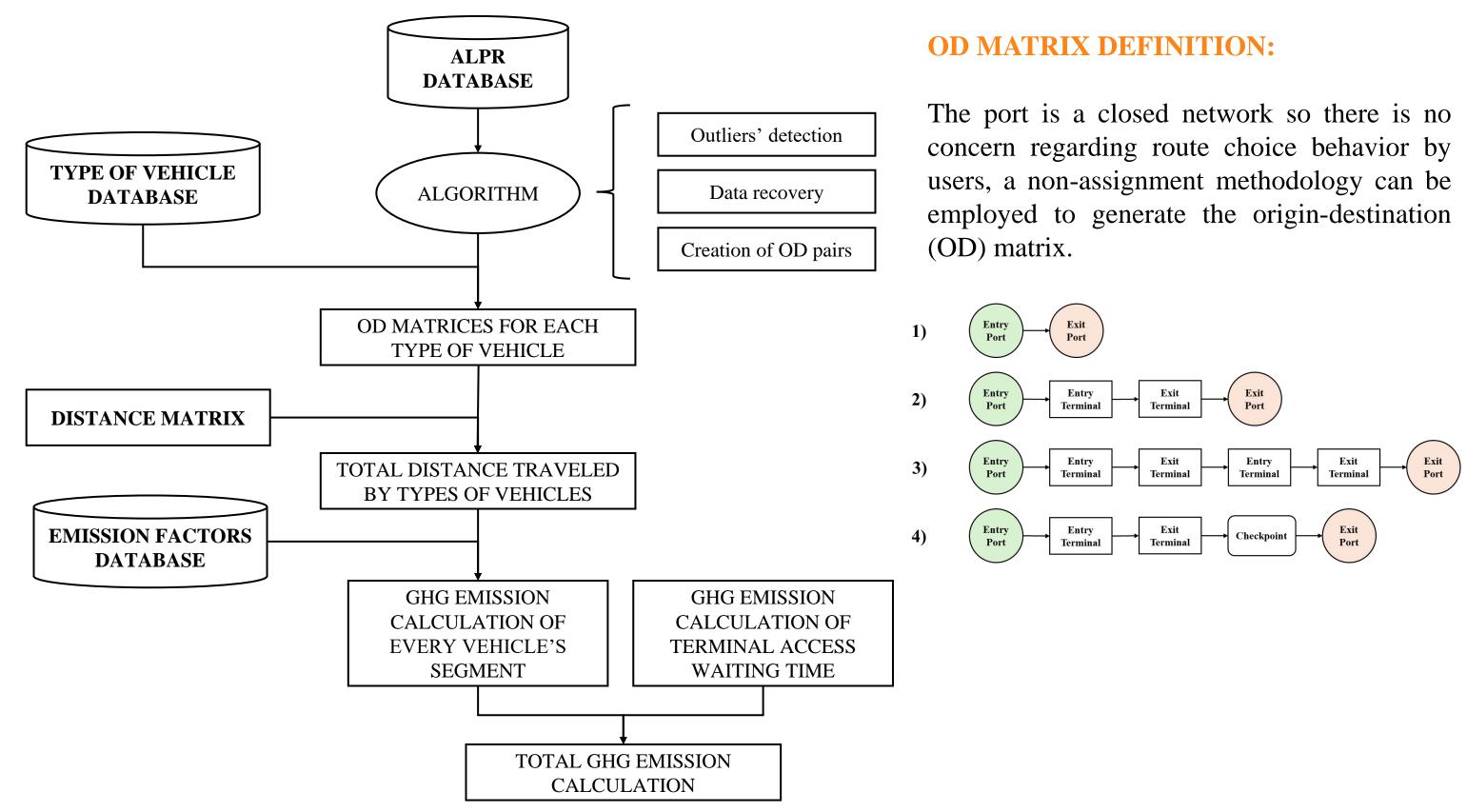
DISTANCE MATRIX

The distances between the cameras located in the area are stored in a matrix. Google Maps has been employed to measure the shortest path between two nodes of the network. represented by the cameras.

In the diagonal of this matrix, the value represents the distance for vehicles that enter and exit at the same point.

Cruise mode emissions:

$$E_{cruise,i} = \sum_{i} (OD_i \times D \times \overline{VF_i} \times \overline{EF_i})$$


vehicle size

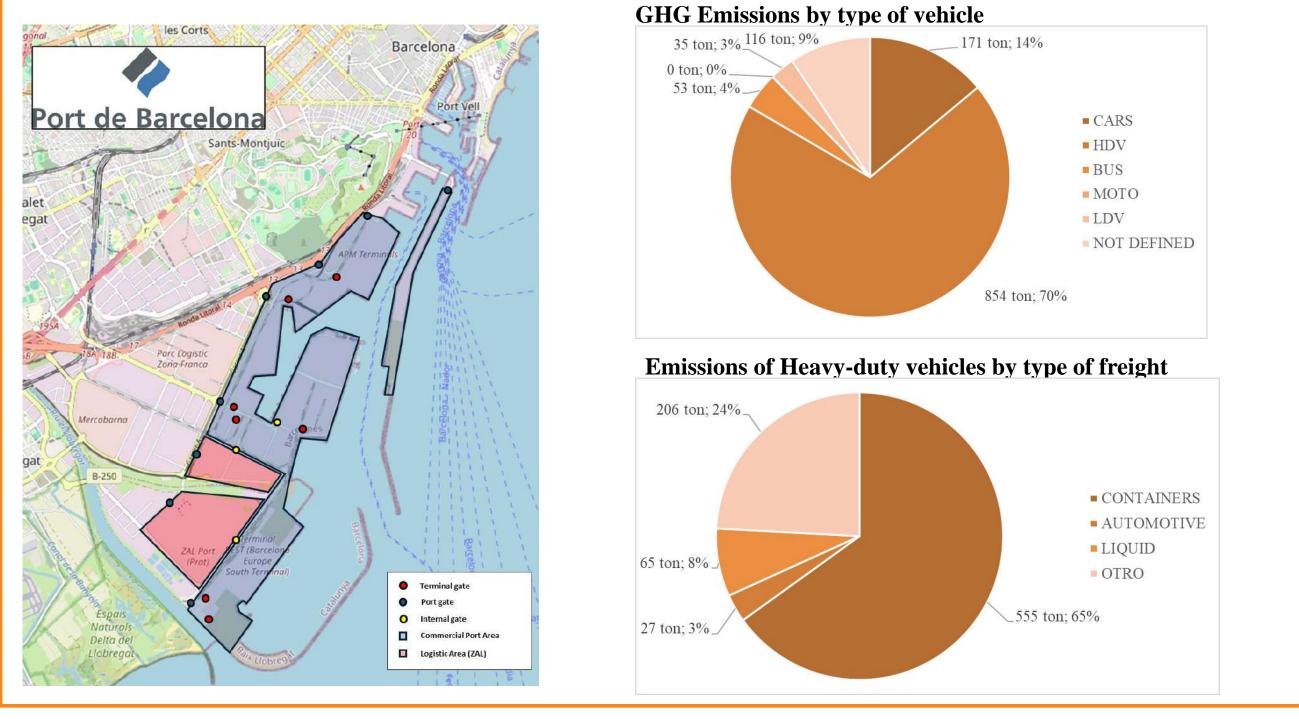
Idle mode emissions:

$$E_{idle,j} = \sum_{j} (\Delta T_{median,j} \times N_j) \times FC \times EF$$

The cruise mode emissions are calculated The idle mode emissions depends on the for each vehicle category (i), depending queues at terminal accesses. These emissions on the vehicle fleet composition in terms depend on the waiting time calculated as of powertrain, EURO standard and difference between the actual travel time and the minimum travel time. The median time for each terminal (j) has been used to avoid outliers.

This study was carried out within the framework of the agreement between the Port Authority of Barcelona, CENIT-CIMNE and UPC (Universitat Politècnica de Catalunya). The authors would like to thank the Port of Barcelona, and particularly the staff of its Department of this research and the Department of Sustainability and Energy Transition for the collaboration and data provision.

Matteo Boschian Cuch, Maurici Hervas and Sergi Saurí, Center for Innovation in Transport (CENIT) – CIMNE – Barcelona Tech (UPC) – Barcelona, Spain


DATA RECOVERY:

The possible lacks in the database are the following:

- Unpaired action (see the table below)
- Illogical pairing

Unpaired Record's Action	Dummy Record added	Hypothesis
Entropos to the Dort (ED)	Exit from the Dort (SD)	An SP is added one second later than
Entrance to the Port (EP)	Exit from the Port (SP)	the EP, through the same gate.
Exit from the Port (SP)	Entrance to the Port (EP)	An EP is added one second before the
Exit from the Fort (SF)	Entrance to the Port (EP)	SP, through the same gate.
	Exit from the Terminal (ST)	An ST is added one second later than
Entry to the Terminal (ET)	Exit from the Terminal (ST) and Exit for the Port (SP)	the ET. In addition, an SP is added
	and Exit for the Fort (SF)	through the most used gate.
		An SP is added one second later than
Exit from the Terminal (ST)	Exit from the Port (SP)	the ST, through the most used gate.
Entrance to the Checkpoint (EC)	Exit from the Port (SP)	An SP is added one second later than
		the EC, through the most used gate.
Exit from the Checkpoint (SC)	Exit from the Port (SP)	An SP is added one second later than
Lan nom the checkpoint (SC)		the SC, through the most used gate.

The Port Authority of Barcelona has set important GHG reduction targets, and it is elaborating an Energy Transition Plan (ETP) to achieve it. Annual calculation of the carbon footprint of the port activities, performed using clear methodologies and verified by a certification scheme (ISO 14064-1) is mandatory to monitor the effectiveness of the emissions reduction ETP actions. It is possible to segregate the results on necessity base, for types of vehicles or type of goods.

- measures.

ACKNOWLEDGMENTS

RESULTS: PORT OF BARCELONA CASE STUDY

DISCUSSION AND CONCLUSION

Other methodologies in literature suggests to compute emissions starting from: • **Traffic statistics**: limited just to freight transport and not detailed travelled distance; • **Surveys and GPS**: the automation is not possible;

With the application of this framework, it is possible to compute the emissions of all the vehicles accessing to the port area, computing the distance travelled inside the network. Moreover, the matrices obtained can also be used for transport management and planning within the network.

There is room for **improving the accuracy** increasing the number of cameras for detecting congestion phenomena in the network and reducing non identified vehicles and better emission factors by vehicle categories would be interesting and be also able to calculate other pollutants.

Future development is the automation of the calculation within a digital twin that allows real-time emission calculations and enables predictions and simulations of scenarios involving the implementation of mitigation